Fuzzy Autoregressive Rules: towards Linguistic Time Series Modeling
نویسندگان
چکیده
Fuzzy rule–based models, a key element in soft computing (SC), have arisen as an alternative for time series analysis and modeling. One difference with preexisting models is their interpretability in terms of human language. Their interactions with other components have also contributed to a huge development in their identification and estimation procedures. In this article, we present fuzzy rule–based models, their links with some regime-switching autoregressive models, and how the use of soft computing concepts can help the practitioner to solve and gain a deeper insight into a given problem. An example on a realized volatility series is presented to show the forecasting abilities of a fuzzy rule–based model.
منابع مشابه
Forecasting seasonal time series with computational intelligence: On recent methods and the potential of their combinations
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the sugge...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملContribution of Fuzzy Systems for Time Series Analysis
A time series is a realization or sample function from a certain stochastic process. The main goals of the analysis of time series are forecasting, modeling and characterizing. Conventional time series models i.e. autoregressive (AR), moving average (MA), hybrid AR and MA (ARMA) models, assume that the time series is stationary. The other methods to model time series are soft computing techniqu...
متن کاملAutoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation
We propose an automatic methodology framework for shortand long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays ...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کامل